(1+x^2)=(2x)^2+(x)^2

Simple and best practice solution for (1+x^2)=(2x)^2+(x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1+x^2)=(2x)^2+(x)^2 equation:



(1+x^2)=(2x)^2+(x)^2
We move all terms to the left:
(1+x^2)-((2x)^2+(x)^2)=0
We get rid of parentheses
x^2-2x^2-x^2+1=0
We add all the numbers together, and all the variables
-2x^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 2=(7p+7) | | 2x+3=-(x-7)-1 | | -4(3x-15)=-2x-2 | | 3x+5*1=4x+1*1 | | 10-2s=-8 | | 2x+18+x+90=180 | | 6x–17=4x+1 | | 3x-8=3(x+2)-14 | | 2x+3(4-x)=x+8 | | 2(x–3)=84 | | 3x+x-27=180 | | (5x-1)(x+3)-(x-5)(5x-1)=40 | | 1,104x^2=50 | | 50=1,104x^2 | | 100+x=1.6x | | y2-411=0 | | 5*x+3/4=3/4 | | 9(2d+7)=8d+3 | | (2x-10)-(x-20)=25 | | 6y+4.59=11.19 | | .25x+12=10 | | 3x-13+x-1+x-1=180 | | 4z+14=82 | | 2c-56=34 | | 4|m|=-20 | | (8y*y)-15y=0 | | 2x+5/3=31/15 | | 4.4+3x=7 | | 0,5-1,7z=0,74+2,32 | | 3(y-7)=2(3y-4)=2-5y | | 0.2=1÷x | | 5(x+4)=3(x-3)+5 |

Equations solver categories